Search results for "virus entry"
showing 3 items of 3 documents
Inhibition of tetraspanin functions impairs human papillomavirus and cytomegalovirus infections
2018
Tetraspanins are suggested to regulate the composition of cell membrane components and control intracellular transport, which leaves them vulnerable to utilization by pathogens such as human papillomaviruses (HPV) and cytomegaloviruses (HCMV) to facilitate host cell entry and subsequent infection. In this study, by means of cellular depletion, the cluster of differentiation (CD) tetraspanins CD9, CD63, and CD151 were found to reduce HPV16 infection in HeLa cells by 50 to 80%. Moreover, we tested recombinant proteins or peptides of specific tetraspanin domains on their effect on the most oncogenic HPV type, HPV16, and HCMV. We found that the C-terminal tails of CD63 and CD151 significantly i…
A Bimolecular Multicellular Complementation System for the Detection of Syncytium Formation: A New Methodology for the Identification of Nipah Virus …
2019
Fusion of viral and cellular membranes is a key step during the viral life cycle. Enveloped viruses trigger this process by means of specialized viral proteins expressed on their surface, the so-called viral fusion proteins. There are multiple assays to analyze the viral entry including those that focus on the cell-cell fusion induced by some viral proteins. These methods often rely on the identification of multinucleated cells (syncytium) as a result of cell membrane fusions. In this manuscript, we describe a novel methodology for the study of cell-cell fusion. Our approach, named Bimolecular Multicellular Complementation (BiMuC), provides an adjustable platform to qualitatively and quanti…
Analysis of the infectious entry pathway of human papillomavirus type 33 pseudovirions.
2002
AbstractHuman papillomavirus type 33 (HPV-33) pseudovirus infection is a slow process dependent on the initial interaction with cell-surface heparan sulfate (T. Giroglou, L. Florin, F. Schafer, R. E. Streeck, and M. Sapp, 2001a, J. Virol. 75, 1565–1570). We have now further dissected the initial steps of pseudovirus uptake using removal of cell-surface proteoglycans and selective inhibition of entry pathways. Treatment of cells with heparinase I, but not with phosphoinositol-specific phospholipase C (PIPLC), prevented binding of papillomavirus-like particles and infection with HPV-33 pseudovirions, indicating that GPI-linked proteoglycans (glypicans) are not required for productive infectio…